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SUPERSONIC FLOW AROUND ELLIPSOIDS 

Experimental invest igat ions of supersonic flow around 
e l l i p s o i d a l  models and the  posit ion of the detached 
shock waves a r e  described. 

Tests were conducted i n  an in te rmi t ten t  wind tunnel a t  Mach numbers /29x 
M = 1.48, 2.01, 2.53, 3.02. The Reynolds numbers, re fe r red  t o  0.1 m length 

and calculated from the  f r e e  stream parameters, ranged from 2.0010 t o  2.5.10 . 
The tes t  models were obla te  e l l i p s o i d s  of revolution with semi-axis r a t i o s  
t = b/a = 0.49, 0.34, and 0.19. 
symmetrically about the axis. The pressure d is t r ibu t ion  on the surface of the 
e l l i p s o i d  with semi-axis r a t i o  t = 0.34 i s  shown i n  f igure  1 f o r  M = 3.02 ( the 
c ross  sect ion iD = 0 - 180"). 
iy = 0, 5 ,  10, and 15" a r e  joined by s o l i d  curves. The dashed curves i n  f igure  1 
give the  values of c /e 

ref ined Newtonian equation 

6 6 

Each model had 11 pressure o r i f i c e s  s i tua ted  

The experimental points  f o r  angles of a t t a c k  

f o r  a = 0, 5, lo", calculated according t o  the  
P PO 

where c 

f o r  the  pressure coef f ic ien t  a t  the leading apex of the body, (Y 

between t h e  tangent t o  the body contour a t  t h i s  point  and the f r e e  stream 
center l ine ,  r = R/a i s  the  dimensionless radius. 
t h a t  equation (1) does not  enable one t o  f ind the  pressure on portions of the 
body i n  i t s  "aerodynamic shadow.f1 According t o  Newtonian theory, the pressure 
on these areas  of the  surface i s  equal t o  zero. 

i s  t h e  value given by the theory of supersonic flow of an i d e a l  gas 

i s  the  angle 
PO 

0 

It i s  necessar i ly  pointed out 

Figure 1 

*Numbers i n  the  margin ind ica te  pagination i n  t h e  o r i g i n a l  foreign t e x t .  
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The tangent ia l  and normal force coef f ic ien ts  of t h e  e l l i p s o i d s  a r e  equal t o  

Here pm, M are t h e  pressure and free stream Mach number, y i s  t h e  adia- 

b a t i c  exponent, pa i s  t h e  absolute pressure on t h e  surface of t h e  body, p i s  the 

angle between the  normal t o  the surface and t h e  a x i s  of the  body. 

I n  calculat ing the  aerodynamic performance curves of the  e l l i p s o i d s  i n  @ supersonic flow a t  various angles of a t tack,  the  assumption was made t h a t  

Here 

The quant i ty  p: denotes the t o t a l  pressure d i r e c t l y  behind the discontinuity.  

Figure 2 

The pressure on the  e l l ipso id  (t = 0.34) i s  shown i n  f igure  2 a s  a function 
of the angle Q f o r  M = 3.02 and streaming a t  oblique angles of a t tack.  
experimental values of p f o r  fixed values of the  dimensionless radius  are com- 
pared with the values calculated from equation ( 2 ) .  
according t o  equation (2) a r e  represented i n  f i g u r e  2 by so l id  curves f o r  
cy = 5 " ,  by dashed curves f o r  cy = lo", and by dot-dash curves f o r  cy = 15". 
apparent from inspection of the graph t h a t  the  experimental d i s t r ibu t ion  of 
pressure with respect  t o  t h e  angle 

The 

The curves calculated 

I t  i s  

is s a t i s f a c t o r i l y  approximated by a cosine 



curve. This makes it possible t o  carry out  an approximate ca lcu la t ion  of the  
aerodynamic performance curves f o r  t h e  e l l i p s o i d s  on the  b a s i s  of data  on the  
pressure d i s t r i b u t i o n  over t h e  contour of one section of t h e  model i n  the  plane 
of the  angle of a t tack ,  thus, reducing t h e  computational e f f o r t .  The tangen- 
t i a l  force coef f ic ien t ,  taking t h e  assumption (2) i n t o  account, acquires t h e  
form 

Figure 3 

The graph of f igure  3 shows t h e  var ia t ion  of the  tangent ia l  force coeff i -  
c i e n t  f o r  t h e  e l l i p s o i d  with semi-axis r a t i o  t = 0.34. 
s t ruc ted  f o r  a d e f i n i t e  M number. It i s  evident from t h e  r e s u l t s  of the experi- 
ment t h a t  i n  t h e  invest igated range of a t t a c k  angles, a! = 9 2 l 5 O ,  t h e  
t a n g e n t i a i  force coef f lc icn t  remSIins e s s e n t i a l l y  constant (+4%) . 
l i n e  i n  f igure  3 i s  calculated from equation (1). 
20% higher than the experimental r e s u l t s  f o r  M = 3.02. 

Each curve w a s  con- 

The dashed 
The ana ly t ic  curve i s  about 

The t e s t e d  e l l i p s o i d s  occupy an intermediate s ta tus  between a sphere 
(t = 1) and a cylinder with a f l a t  leading p a r t  (t = 9) .  It i s  apparent from 
f i g u r e  4 t h a t  f l a t t e n i n g  of the  e l l ipso id  from t = 3.49 t o  0.19 increases t h e  
wave drag by 15  t o  18%; as the  M number i s  increased from 1.48 t o  3.02 t h e  tan-  
g e n t i a l  force coef f ic ien t  f o r  a l l  models t e s t e d  increases b y  20 t o  22%; the  
dashed l i n e  gives t h e  values of c7 according t o  the  ref ined Newtonian equation. 

Resul ts  of experimental invest igat ions on supersonic flow p a s t  p la tes  and 
bodies of revolution with e l l i p t i c a l  f r o n t a l  portions a r e  described by Holder 
and Chinneck ( r e f .  1). 
drag, and flow spectra of t h e  models with M numbers ranging from 1.42 t o  1.82. 
The crosses i n  f igure 4 ind ica te  these r e s u l t s  for the  case of a body of revo-/31 
l u t i o n  with a f l a t  leading portion, an e l l i p s o i d  with semi-axis r a t i o  t = 3.5, 
and a sphere, with M = 1.42. 

The authors obtained data  on t h e  pressure d i s t r i b u t i o n ,  

The normal force coef f ic ien t  i s  determined from t h e  equation 
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Figure 4 

The dependence of t he  normal force coe f f i c i en t  on the  angle of a t t a c k  i s  
shown i n  f igu re  5 f o r  an e l l i p s o i d a l  model  with t = 0.34. 
t h e  experimental points ,  t he  dashed l i ne  gives  the  value of c calculated from 

equation (1). 
normal force  coe f f i c i en t  of the  e l l i p so ids  increases  l i n e a r l y  with angle of 
a t tack .  

The so l id  l i n e  joins 

In  t h e  invest igated range of a t t a c k  angles,  (Y = 0 t o  15", the  
n 

Figure 5 Figure 6 

The e f f e c t  of f l a t t e n i n g  of the e l l i p so id  on the value of de /?CY i s  

The experimental data f o r  M = 3.02 (curve 1) a r e  compared 
n ((Y=O) 

shown i n  f igu re  6. 
w i t h  t he  values calculated from the refined Newtonian formula (curve 2 ) .  

The shape of t he  bow wave and stand-off dis tance were analyzed from photo- 
graphs of t he  flow pas t  the e l l ipso ids  a t  zero angle of a t tack .  
shape and pos i t ion  of t he  bow wave f o r  t h e  e l l i p s o i d  with semi-axis r a t i o  
t = 0.49 a r e  i l l u s t r a t e d  i n  f igure 7. The graphs were constructed i n  t h e  
dimensionless coordinates of points  on t h e  wave. The numerals 1, 2, 3, 4 r e f e r  
t o  t h e  shapes of t he  head wave and posi t ions of the  e l l i p s o i d  nose f o r  Mach 
numbers M = 3.02, 2.53, 2.01, and 1.48, respect ively ( so l id  curves).  For com- 
par ison w i t h  t he  r e s u l t s  of t he  t e s t s  a t  M = 1.48, data from reference 1 f o r  a 
s imi l a r  e l l i p s o i d  with t = 0.5 and M = 1.42 a r e  a l s o  given i n  f igu re  7 (dashed 
curves).  

Data on the 

- 

The complex flow behind the  shock wave was calculated on e lec t ronic  com- 
pu te r s  by numerical methods. Using A. A. Dorodnitsyn's method of i n t e g r a l  
r e l a t i o n s  ( r e f  .2),  0. M. 
t h e  nose sec t ions  of e l l i p s o i d s  of revolution. 
revea ls  the shape of t he  head wave for an e l l i p so id  with semi-axis r a t i o  

Belotserkovskiy ( re f .3)  computed the  flow f i e l d  about 
The dot-dash curve i n  f igu re  7 
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Figure 7 

t = 0.666 a t  M = 4.0 ( r e f .  3 ) .  
r e sen t s  t he  r e s u l t s  of Osborne and Crane's experiments (ref. 4) f o r  an e l l i p s o i d  
with t = 0.707'. 
(hemisphere, hyperboloid, and e l l i p s o i d )  a t  M = 6.8 was s tudied i n  reference 4. 

In t h i s  same f igure ,  the dot-dot-dash curve rep& 

The flow around models of th ree  ax ia l ly  symmetrical bodies 

Theoretical  and experimental data on t h e  detachment of a compression shock 
from a body a s  a function of the  f r e e  stream Mach number a re  shown i n  f igu re  8. 
The M number i s  p lo t ted  on the  horizontal  axis ,  the  r a t i o n  6/a on the  v e r t i c a l  
(where 6 is  the  dis tance between t h e  shock and t h e  body along the  x a x i s ) .  On 
the  b a s i s  of data from the  tes ts  described herein,  for M = 1.48, 2.01, 2.53, 
ana 3.92 (open c i r c i e s j  the  curves of 6,Ia = f i i v i )  were constructed for e i i i p so ids  
w i t h  semi-axis r a t i o s  t = 0.19, 0.34, and 0.49. 

Figure 8 

V i n o h r  ( re f .  5 )  gives two approximate ana ly t i ca l  so lu t ions  f o r  a family of 
ob la t e  e l l i p s o i d s  with constant density. It  i s  assumed, i n  the  f i rs t  solut ion,  

5 



t h a t  the surface of pressure discontinuity i s  confocal w i t h  the  surface of the 
body. I n  the  second solut ion,  the  assumption i s  t h a t  the  curvature of the d i s -  
cont inui ty  i s  constant near the axis .  The t h e o r e t i c a l  data of Vinokur f o r  the 
parameter 6/a a r e  represented i n  f igure  8 by a dashed curve f o r  the f i r s t  solu- 
t i o n  and by a dot-dash curve f o r  t h e  second. The second solut ion comes nearer 
the  experimental data than the  f i r s t ,  although, both gives values f o r  6,/a t h a t  
a r e  too low r e l a t i v e  t o  the experimental values. 

In  reference 1, the  shock stand-off distance was measured for a cylinder 
with a f l a t  f r o n t a l  portion, an e l l ipso id ,  and a sphere f o r  M = 1.42, 1.6, 1.82 
(heavy dots  i n  f igure  8). 
ence 1 f o r  an e l l i p s o i d  w i t h  t = 0.5 agrees s a t i s f a c t o r i l y  with the r e s u l t s  of 
our own measurements. 
stand-off distance of the shock wave from t h e  e l l i p s o i d  (6/a) decreases from 
1.05 t o  0.86 f o r  M = 1.48, and from 0.48 t o  0.33 fo r  M = 3.02. Figure 8, a l s o ,  
shows Servin 's  ( r e f .  6-7) t h e o r e t i c a l  (dotted curve) and experimental (squares) 
values of the  parameter 6/a f o r  the case of a flat-ended cylinder,  a s  wel l  as ,  
t h e  r e s u l t s  of experiments ( re f .  8)  on a sphere (c i rc led  crosses).  

A s  i s  apparent from the graph, the data of re fer -  

A s  the parameter t i s  varied from 0.19 t o  0.49, the 
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